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ABSTRACT
Most of the available works on molecular communication
(MC) assume that the channel state information (CSI) is
perfectly known at the receiver for data detection. In con-
trast, in this paper, we study non-coherent multiple-symbol
detection schemes which do not require knowledge of the
CSI. In particular, we derive the optimal maximum likeli-
hood (ML) multiple-symbol (MLMS) detector. Moreover,
we propose an approximated detection metric and a sub-
optimal detector to cope with the high complexity of the
optimal MLMS detector. Numerical results reveal the effec-
tiveness of the proposed optimal and suboptimal detection
schemes with respect to a baseline scheme which assumes
perfect CSI knowledge, particularly when the number of ob-
servations used for detection is sufficiently large.

1. INTRODUCTION
Molecular communication (MC) has recently emerged as

a bio-inspired approach for synthetic communication sys-
tems over nano/micrometer scale dimensions [3, 8]. Unlike
conventional wireless communication systems which employ
electromagnetic waves for carrying information, MC systems
encode information in the number, type, or time of release
of signalling molecules. Calcium signaling of neurons and
the exchange of autoinducers in bacteria quorum sensing are
among the many examples of MC in nature [3, 4].

In diffusive MC, the channel state information (CSI) is
defined as the means of the numbers of the signaling and
interfering molecules which are observed at the receiver due
to the release of a known number of molecules by the trans-
mitter. Most existing works on MC assume that the CSI is
perfectly known at the receiver for reliable detection of the
transmitted information bits [5, 13, 15]. However, the CSI is
not known a priori and has to be estimated. To this end,
a training-based CSI estimation framework was developed
in [11] and several optimal and suboptimal estimators were
proposed. However, the acquisition of the CSI is a suitable
option only if the coherence time of the MC channel is suffi-
ciently large such that the corresponding training overhead
is tolerable. On the other hand, for the case when the MC
channel changes rapidly, accurate CSI estimation entails a
large overhead, and reducing the overhead implies a low CSI
estimation quality. In this case, directly detecting the data
symbols without spending any resources on CSI acquisition
is an attractive option which is referred to as non-coherent
detection.

In this paper, our focus is to design optimal and subopti-
mal non-coherent multiple-symbol detection schemes which
do not require knowledge of the instantaneous CSI. In partic-

ular, we first derive the optimal maximum likelihood (ML)
multiple-symbol (MLMS) detector. One of the main chal-
lenges in implementing the optimal detector is the computa-
tion of the detection metrics, which requires the evaluation of
expectations with respect to the probability density function
(PDF) of the CSI. The PDF of the CSI depends on the con-
sidered MC environment and a general analytical expression
is not yet available in the literature. In practice, the PDF of
the CSI for a particular MC channel can be obtained using
historical measurements of the CSI. In this paper, we pro-
pose the Gamma distribution as an approximation for the
PDF of the CSI which is shown to accurately match the ex-
act historical distribution for several examples of stochastic
MC channels. Moreover, we show that the Gamma distribu-
tion yields a closed-form expression for the detection metric.
Additionally, we develop a blind suboptimal detector which
first estimates the CSI based on the multiple symbols in each
detection block (without employing a training sequence) and
then performs ML detection based on the estimated CSI. Our
numerical results reveal the effectiveness of the proposed op-
timal and suboptimal non-coherent detectors and show that
as the number of observation symbols increases, their perfor-
mances approach that of the baseline scheme, which assumes
perfect CSI.

We note that in contrast to MC, for conventional wire-
less communication there is a rich literature on non-coherent
multiple-symbol detection, see e.g. [6,16], and the references
therein. In particular, in [6], multiple-symbol differential de-
tection without CSI was presented for radio frequency (RF)
communications and in [16], non-coherent multiple-symbol
detection for a photon-counting receiver was studied for op-
tical communications. We note that the detection problem
and the resulting detection strategies developed for conven-
tional wireless communications are not straightforwardly ap-
plicable to the corresponding MC detection problem. In the
recent paper [12], the authors considered the problem of non-
coherent data detection in MC. In particular, it was shown
in [12] that the difference in molecule concentration is a sta-
ble characteristic of the diffusive MC channel and, based on
this fact, a heuristic low-complexity non-coherent symbol-
by-symbol detector was proposed. However, to the best of
the authors’ knowledge, the design of optimal/suboptimal
non-coherent multiple-symbol detectors has not been consid-
ered in the MC literature, yet.

The remainder of this paper is organized as follows. In
Section 2, the system model, preliminaries, and assumptions
are presented. The proposed optimal/suboptimal detectors
are introduced in Section 3. Numerical results are provided
in Section 4, and conclusions are drawn in Section 5.



Figure 1: Schematic illustration of the considered
MC system where the molecules released by the
transmitter in a given symbol interval are shown in
green color whereas the noise molecules are shown
in red color.

Notations: We use the following notations throughout this
paper: Ex{·} denotes expectation with respect to random
variable (RV) x and | · | represents the cardinality of a set.
Bold letters are used to denote vectors and aT represents
the transpose of vector a. b·c and d·e denote the floor and
ceiling functions which map a real number to the largest
previous and the smallest following integer numbers, respec-
tively. Moreover, Poiss(λ) denotes a Poisson RV with mean
λ, Bin(n, p) denotes a binomial RV for n trials and success
probability p, N

(
µ, σ2

)
denotes a Gaussian RV with mean

µ and variance σ2, and Gamma(α, β) denotes a Gamma dis-
tributed RV with scale parameter α and rate parameter β.

2. SYSTEM MODEL AND PRELIMINARIES
In this section, we first introduce the adopted MC chan-

nel model and state the considered non-coherent detection
problem. Subsequently, we provide an example of a stochas-
tic MC channel and a performance upper bound.

2.1 System Model
We consider an MC system consisting of a transmitter,

a channel, and a receiver, see Fig. 1. At the beginning of
each symbol interval, the transmitter releases either N TX or
zero molecules corresponding to the binary bits 1 and 0, re-
spectively, i.e., ON-OFF keying is performed [8]. In this
paper, we assume that the transmitter emits only one type
of molecule. The released molecules diffuse through the fluid
medium between the transmitter and the receiver. We as-
sume that the movements of individual molecules are inde-
pendent from each other. The receiver counts the number
of observed molecules in each symbol interval. We note that
this is a rather general model for the MC receiver which
includes well-known receivers such as the transparent re-
ceiver [13], the absorbing receiver [2], and the reactive re-
ceiver [1]. In particular, the number of observed molecules at
the receiver in symbol interval k, denoted by r[k], is given by

r[k] = cs[k] + cn[k], (1)

where cs[k] is the number of molecules observed at the re-
ceiver in symbol interval k due to the release of s[k]N Tx

molecules by the transmitter at the beginning of symbol in-
terval k, where s[k] ∈ {0, 1} holds. We assume that the bi-
nary information bits are equiprobable, i.e., Pr{s[k] = 1} =
Pr{s[k] = 0} = 0.5. Moreover, cn[k] is the number of inter-
fering noise molecules comprising residual inter-symbol in-
terference (ISI), multiuser interference (caused by other MC
links), and external noise (originated from natural sources)
observed by the receiver in symbol interval k.

The MC channel is dispersive due to the diffusive prop-
agation of the molecules [14]. The ISI-free communication
model in (1) implies that the symbol intervals are chosen suf-
ficiently large such that the channel impulse response (CIR)
fully decays to zero within one symbol interval. We note

that enzymes [14] and reactive information molecules, such
as acid/base molecules [7], may be used to speed up the de-
caying of the CIR as a function of time. Nevertheless, since
the length of the symbol intervals is finite, some residual ISI
always exists. Throughout this paper, we assume that the
effect of the residual ISI is included in cn[k] and is sufficiently
small compared to the other components in cn[k] such that
cn[k] is (approximately) independent of the signal component
cs[k].

From a probabilistic point of view, we can assume that
each molecule released by the transmitter in a given sym-
bol interval is observed at the receiver in the same symbol
interval with a certain probability, denoted by p. There-
fore, the probability that n molecules are observed at the
receiver due to the emission of N Tx molecules at the trans-
mitter follows a binomial distribution, i.e., n ∼ Bin(N Tx, p).

Moreover, assuming N Tx → ∞ while N Txp , c̄s is fixed,
the binomial distribution Bin(N Tx, p) converges to the Pois-
son distribution Poiss (c̄s) [9]. Another approximation of the
binomial distribution Bin(N Tx, p) is the Gaussian distribu-

tion N (N Txp,
√
N Txp(1− p)) which holds for very large N Tx

when the success probability p is not close to zero (equiva-
lently when N Txp is a large number) [9]. We note that the
assumptions for the former case are more justified for MC
since the number of released molecules is typically very large
and the probability that a molecule released by the transmit-
ter reaches the destination is typically very small. There-
fore, we adopt the Poisson approximation in this paper, i.e.,
cs[k] ∼ Poiss (c̄ss[k]), see [5, 15]. Since the noise molecules
originate from interfering natural or syntactic sources, cn[k]
is also modeled as a Poisson RV, i.e., cn[k] ∼ Poiss (c̄n), where
c̄n = E {cn[k]}. In the remainder of this paper, we refer to
the pair (c̄s, c̄n) as the CSI of the considered MC system.

Remark 1. The channel model in (1) can be generalized
to the case of multiple-sample detection if the following sum
detector is employed

r[k] =

M∑
m=1

y[k,m]

=

M∑
m=1

cs[k,m] +

M∑
m=1

cn[k,m] , cs[k] + cn[k], (2)

where M denotes the number of samples per symbol interval
and y[k,m] is the number of molecules observed at the re-
ceiver in the m-th sample of symbol interval k. Moreover,
cs[k,m] is the number of molecules observed at the receiver
in the m-th sample of symbol interval k due to the release of
s[k]N Tx molecules by the transmitter at the beginning of sym-
bol interval k and cn[k,m] is the number of noise molecules
observed by the receiver in the m-th sample of symbol in-
terval k. Thus, cs[k] and cn[k] follow Poisson distributions

with means c̄s =
∑M
m=1 c̄

(m)
s and Mc̄n, respectively, where

c̄
(m)
s = E {cs[k,m]} and c̄n = E {cn[k,m]}. We note that

the sum detector in (2) includes the well-known peak ob-
servation [15] and energy observation [17] detectors as spe-
cial cases when only one sample at the peak concentration is
taken and (ideally infinitely) many samples per symbol in-
terval are taken, respectively.

Remark 2. Unlike the conventional linear input-output
model for channels with memory in wireless communications
[6], the channel model in (1) is not linear since s[k] does not
affect the observation r[k] directly but via Poisson RV cs[k].
However, the expectation of the received signal is linearly



dependent on the transmitted signal, i.e.,

r̄[k] = E {r[k]} = c̄ss[k] + c̄n. (3)

We note that for a given s[k], in general, the actual number
of molecules observed at the receiver, r[k], will differ from
the expected number of observed molecules, r̄[k], due to the
intrinsic noisiness of diffusion.

2.2 Non-Coherent Detection Problem in MC
Most existing detection schemes in MC assumed that knowl-

edge of the CSI, (c̄s, c̄n), is available at the receiver [5,13,15].
In contrast, in this paper, we directly detect a block of multi-
ple transmitted symbols based on the corresponding received
observations without spending any resources on CSI acqui-
sition at the receiver.

Let s = [s[1], s[2], . . . , s[K]]T and r = [r[1], r[2], . . . , r[K]]T

denote the vectors of the transmitted symbols and the re-
ceived observations, respectively, over a block of K symbol
intervals. Throughout the remainder of the paper, we as-
sume that the CSI remains unchanged over one block of
transmitted symbols, but may change from one block to
the next (e.g., due to a change of the distance between
Tx and Rx). To model this, we assume that CSI (c̄s, c̄n)
is an RV which takes its values in each block according to
PDF f(c̄s,c̄n)(c̄s, c̄n). Furthermore, we assume that RVs c̄s
and c̄n are independent, i.e., f(c̄s,c̄n)(c̄s, c̄n) = fc̄s(c̄s)fc̄n(c̄n)
where fc̄s(c̄s) and fc̄n(c̄n) are the marginal PDFs of c̄s and
c̄n, respectively. We note that although the proposed non-
coherent detection schemes do not require knowledge of the
instantaneous CSI, (c̄s, c̄n), we assume that the statistical
CSI, i.e., f(c̄s,c̄n)(c̄s, c̄n), is available for the design of the pro-
posed optimal non-coherent detector, cf. Theorem 1. Since
obtaining the CSI statistics might be difficult for some prac-
tical systems, we also propose a suboptimal non-coherent
detector which does not require statistical CSI knowledge.
For future reference, in the rest of this work, we define
fr(r|c̄s, c̄n, s) =

∏
k fr[k](r[k]|c̄s, c̄n, s[k]) as the PDF of obser-

vation vector r conditioned on both CSI (c̄s, c̄n) and trans-
mitted symbol vector s and fr(r|s) =

∏
k fr[k](r[k]|s[k]) as

the PDF of r conditioned on only s.

2.3 Example of a Stochastic MC Channel
In this subsection, we present an example for a stochas-

tic MC channel. We will employ this MC channel in Sec-
tion 4 for the evaluation of the proposed non-coherent detec-
tors. Let us assume a point source with impulsive molecule
release, a fully transparent spherical receiver with volume
V RX, and an unbounded environment with diffusion coeffi-
cient D, where the distance between the transmitter and the
receiver is denoted by r. In addition, we assume that there is
steady uniform flow (or drift) with parallel and perpendicu-
lar velocity components, denoted by v‖ and v⊥, respectively,
with respect to the direction from the transmitter to the re-
ceiver. Furthermore, the signaling molecules may react with
enzyme molecules, which are present in the MC environment,
and degrade into a form that cannot be detected by the re-
ceiver. We assume a uniform concentration of the enzyme,
denoted by c̄e, and a first order reaction mechanism between
the signaling and enzyme molecules with constant reaction
rate κ [15]. Based on the aforementioned assumptions, the
expected number of molecules observed at the receiver as a
function of time, denoted by c̄s(t), is given by [15]

c̄s(t) =
N TXV RX

(4πDt)3/2
exp

(
−κc̄et−

(r − v‖t)2 + (v⊥t)
2

4Dt

)
. (4)

Furthermore, assuming a peak observation detector, the sam-
ple time from the beginning of each symbol interval is chosen
as tmax = argmax

t>0
c̄s(t) which leads to c̄s = max

t>0
c̄s(t).

In practice, however, there may be random variations in
the underlying channel parameters which lead to random
variations in c̄s. For instance, the flow velocity compo-
nents, v‖ and v⊥, may vary over time or the diffusion co-
efficient, D, and enzyme concentration, c̄e, may change due
to variations in the environment temperature. To capture
these effects, we assume that the channel parameters in each
detection block are realizations of RVs according to z =
zdef(1 + σzN (0, 1)), z ∈ {D, v‖, v⊥, c̄e, κ, r} where zdef de-
notes the mean value of parameter z and σzz

def is its stan-
dard deviation which determines how much the parameter
may deviate from the mean1. As σz → 0, ∀z, the respec-
tive MC channel becomes deterministic, and for large σz, the
corresponding MC channel is highly stochastic. Substitut-
ing the Gaussian RVs z ∈ {D, v‖, v⊥, c̄e, κ, r} into (4) may
not lead to a closed-form analytical expression for fc̄s(c̄s).
Therefore, we employ Monte Carlo simulation to determine
the histogram of c̄s. Furthermore, in Subsection 3.2, we pro-
pose an analytical distribution and a strategy to match this
analytical distribution to the histogram of c̄s. We note that
since the noise mean c̄n might also be generated from natu-
ral or synthetic noise sources which employ the same type of
molecules, the noise mean is also affected by the change in
the underlying MC channel parameters. Therefore, in order
to obtain fc̄n(c̄n), one may also model the variation of c̄n in
a similar manner as discussed above for c̄s.

2.4 Performance Bound
As a performance upper bound, we consider the optimal

detection scheme for perfect CSI knowledge. Moreover, since
the observations in different symbol intervals are indepen-
dent, without loss of optimality, the considered benchmark
scheme performs symbol-by-symbol data detection. Thereby,
the optimal ML detector is given by

ŝML[k] = argmax
s[k]∈{0,1}

fr[k]

(
r[k]

∣∣c̄s, c̄n, s[k]
)

= argmax
s[k]∈{0,1}

(c̄ss[k] + c̄n)
r[k] exp (−c̄ss[k]− c̄n)
r[k]!

, (5)

where fr[k]

(
r[k]

∣∣c̄s, c̄n, s[k]
)

is the Poisson distribution func-
tion. The aforementioned ML detector can be rewritten in
the form of a threshold-based detector as follows

ŝML[k] =

{
1, if r[k] ≥ ξML

0, otherwise
(6)

where ξML = c̄s
ln(1+ c̄s

c̄n
)
.

3. MULTIPLE-SYMBOL DETECTION
In this section, we first derive the optimal non-coherent

MLMS detector. Subsequently, we propose an approximate
detection metric and a low-complexity suboptimal detector
to cope with the high complexity of the MLMS detector.

3.1 Optimal Multiple-Symbol Detector

1We note that a Gaussian RV may assume negative values
whereas D, c̄e, and r are non-negative parameters. There-
fore, we assume small values for σD, σc̄e , and σr and omit
those realizations for which z ∈ {c̄e, D, r} is negative.



The MLMS detector is mathematically given by

ŝMLMS = argmax
s∈A

fr(r|s)

= argmax
s∈A

∫
c̄s≥0

∫
c̄n≥0

fr(r|c̄s, c̄n, s)f(c̄s,c̄n)(c̄s, c̄n)dc̄sdc̄n

= argmax
s∈A

∫
c̄s≥0

∫
c̄n≥0

K∏
k=1

(c̄ss[k] + c̄n)
r[k] exp (−c̄ss[k]− c̄n)
r[k]!

× fc̄s(c̄s)fc̄n(c̄n)dc̄sdc̄n, (7)

where A is the set of all 2K possible binary sequences of
length K. In (7), we employ the multivariate Poisson distri-
bution function fr(r|c̄s, c̄n, s) and exploit the facts that the
observations in different symbol intervals are independent
and that RVs c̄s and c̄n are independent. Before present-
ing the MLMS detector as a solution of (7) in the following
theorem, we introduce some auxiliary variables. For a given
hypothetical sequence s, let K1 and K0 denote the sets of
indices k for which s[k] = 1 and s[k] = 0 holds, respec-
tively. Additionally, for a given observation vector r, we
define n1 =

∑
k∈K1

r[k] and n0 =
∑
k∈K0

r[k].

Theorem 1. The non-coherent MLMS detector for ON-
OFF keying modulation in diffusive MC selects a sequence
whose “1” elements correspond to the kthr largest elements of
r. Moreover, the optimal threshold k∗thr is obtained as

k∗thr = argmax
kthr∈{0,1,...,K}

Λ(s), (8)

where Λ(s) is the MLMS detection metric and is given by

Λ(s) =

n1∑
i=0

(
n1

i

)
Ec̄s

{
c̄n1−i
s e−kthrc̄s

}
Ec̄n

{
c̄n0+i
n e−Kc̄n

}
.

(9)

Furthermore, as K →∞, we obtain k∗thr → K
2

.

Proof. Please refer to the Appendix.

In other words, for MLMS detection, we may first sort all
elements of r in a decreasing manner in a new vector denoted
by r̃ = [r̃[1], r̃[2], · · · , r̃[K]]T , i.e., r̃[1] ≥ r̃[2] ≥ · · · ≥ r̃[K].
Second, for each kthr ∈ {0, 1, . . . ,K}, we set the elements of
the candidate MLMS detection sequence s corresponding to
the first kthr elements of r̃ to “1” and the remaining elements
of s to “0”. Among the K + 1 candidate MLMS detection
sequences corresponding to kthr ∈ {0, 1, . . . ,K}, we choose
that s which maximizes the MLMS detection metric Λ(s)
given in (9).

Remark 3. The complexity of the proposed MLMS de-
tector in Theorem 1 is significantly smaller than that of the
original search given in (7). In particular, the complexity of
the search in (7) grows exponentially in K, i.e., |A| = 2K ,
whereas the complexity of the search in Theorem 1 is linearly
increasing in K, i.e., there are K + 1 possibilities. Further-
more, for each search step, we have to calculate metric Λ(s)
which is a function of the statistical CSI, but not the instan-
taneous CSI, since c̄s and c̄n are averaged out in Λ(s), cf.
(9). Moreover, all the terms in the MLMS detection metric
are in the form of Ex

{
xae−bx

}
where x ∈ {c̄s, c̄n} and a

and b are constants. Therefore, if these expectations for all
required a and b can be computed offline, they can be stored
at the receiver and used for online data detection.

3.2 Suboptimal Detection Metric

The main challenge of the optimal detector in Theorem 1
is the calculation of the detection metric in (9). In particu-
lar, the metric in (9) is in the form of expectations over the
PDF of the CSI, i.e., fx(x), x ∈ {c̄s, c̄n}. Theses PDFs de-
pend on the considered MC environment and general analyt-
ical expressions for fx(x), x ∈ {c̄s, c̄n} are not yet available
in the literature. In practice, for a particular MC channel,
these PDFs can be obtained using historical measurements
of c̄s and c̄s. However, the historical PDFs might not lend
themselves to a simple analytical form. Therefore, a com-
mon convenient approach for mathematical derivation of the
detection metric in (9) is to assume a particular parametric
model for fx(x) and to adjust the parameters of the model
to match the simulation/experimental data. Using this ap-
proach, the parametric model for the PDF of the CSI has to
satisfy the following criteria:

• The PDF fx(x) has to be supported only over the non-
negative range, i.e., fx(x) = 0 for x < 0, since c̄s and
c̄n assume only non-negative values.

• A flexible parametric model is desirable such that by
varying its parameters, it is able to accurately approxi-
mate the exact distribution. This goal can be achieved
if PDF fx(x) has several parameters which can be ad-
justed for accurate approximation.

• The adopted PDF fx(x) has to be analytically tractable
and, for the purpose of this paper, effectively lead to a
sufficiently simple detection metric.

Considering the above criteria, we have investigated sev-
eral well-known distributions, including chi-square, Nakagami,
log-normal, Weibull, and Levy distributions [10], and found
that the Gamma distribution, given in (10) below, is an ac-
curate approximation of fx(x), x ∈ {c̄s, c̄n}, for the consid-
ered stochastic MC channel introduced in Subsection 2.3. In
particular, the Gamma distribution is given by

f gammax (x) =

{
βαxα−1e−βx

Γ(α)
, if x ≥ 0

0, otherwise
(10)

where Γ(·) is the Gamma function, and α, β > 0 are the pa-
rameters of the Gamma distribution [10]. As we will show
in Section 4, the Gamma distribution can effectively capture
the randomness of the CSI introduced by the random vari-
ations of the underlying MC channel parameters, e.g., the
flow velocity, the enzyme concentration, the diffusion coeffi-
cient, etc. Note that the terms in the detection metric in (9)
are of the form Ex

{
xae−bx

}
where x ∈ {c̄s, c̄n} and a and

b are constants. Therefore, using the Gamma distribution,
Ex
{
xae−bx

}
can be expressed as

Ex

{
xae−bx

}
=

∫ ∞
x=0

xae−bx × βαxα−1e−βx

Γ(α)
dx

=
βα

Γ(α)

∫ ∞
x=0

xa+α−1e−(b+β)xdx

=
βαΓ(a+ α)

Γ(α)(b+ β)a+α

∫ ∞
x=0

(b+ β)a+αxa+α−1e−(b+β)x

Γ(a+ α)
dx︸ ︷︷ ︸

=1

=
Γ(a+ α)βα

Γ(α)(b+ β)a+α
. (11)

The parameters α and β have to be properly chosen such
that the resulting Gamma distribution well approximates
the exact distribution or the histogram of the measurement
data. To this end, we adopt the weighted min square error



as a criterion to be minimized for the optimal choice of α
and β. In particular, the optimal α∗ and β∗ are obtained as

(α∗, β∗) = argmin
α,β>0

∫ ∞
x=0

w(x) |fx(x)− f gammax (x)|2 dx,

(12)

where w(x) ≥ 0, ∀x, is an appropriately chosen weight func-
tion which can be used to give priority for accurate matching
of a specific range of x. Using the Gamma distribution with
the optimized parameters, the metric required in Theorem 1
is given in closed form based on (11).

Remark 4. In Section 4, we perform an exhaustive search
to find the optimal α∗ and β∗. However, since the feasible
sets of α and β are semi-infinite, i.e., α, β ∈ (0,+∞), a full
search is not possible. To overcome this challenge, we first
note that there exists a unique Gamma distribution f gammax (x)
which has the same mean and variance as the exact distri-
bution fx(x). The parameters of this Gamma distribution,
denoted by (ᾱ, β̄), as a function of the mean and the variance
of the exact distribution, denoted by µx and σ2

x, respectively,
are given by

(ᾱ, β̄) =

(
µ2
x

σ2
x

,
µx
σ2
x

)
. (13)

Since the optimal parameters (α∗, β∗) are expected to lead to
a Gamma distribution which has a mean and a variance that
are close to those of the exact distribution, we can efficiently
limit the search to intervals α ∈ [(1 − δ)ᾱ, (1 + δ)ᾱ] and
β ∈ [(1 − δ)β̄, (1 + δ)β̄], where δ ≥ 0 determines how large
the search intervals are.

3.3 Suboptimal Detector Based on Blind CSI
Estimation

The optimal MLMS detector requires statistical knowledge
of the CSI which might be difficult to be acquired for some
practical MC systems. Therefore, in the following, we pro-
pose a suboptimal detector which does not need statistical
CSI knowledge. The main idea behind the simple detector
which we propose in this subsection is to first estimate the
CSI based on the symbols in the detection block in order to
approximate the optimal ML threshold which is denoted by
ξ̂ML. Subsequently, symbol-by-symbol detection can be per-
formed based on the approximated threshold ξ̂ML. We note
that the channel estimator is blind since no training sequence
is used.

For a given observation block r, let K̃1 (K̃0) denote the sets
of indices k for the

⌈
K
2

⌉
-th largest (

⌊
K
2

⌋
-th smallest) r[k] in

the block. The proposed suboptimal detector is formally
presented in the following.

Proposed Blind ML-Based Detector: The proposed blind
ML-based detector for ON-OFF keying modulation in diffu-
sive MC is given by

ŝMLBL[k] =

{
1, if r[k] ≥ ξMLBL
0, otherwise

(14)

where ξMLBL =
ˆ̄cs

ln(1+
ˆ̄cs
ˆ̄cn

)
is the blind detection threshold. Hereby,

the CIR estimates ˆ̄cs and ˆ̄cn are obtained as

ˆ̄cs =
1⌈
K
2

⌉ ∑
k∈K̃1

[r[k]− ˆ̄cn] (15a)

ˆ̄cn =
1⌊
K
2

⌋ ∑
k∈K̃0

r[k]. (15b)

Table 1: Default Values of the Numerical Parame-
ters [4, 15].

Variable Definition Value

N TX Number of released molecules 104 molecules

V RX Receiver volume 4
3
π503 nm3

(a sphere with radius 50 nm)
r Distance between the transmitter and the receiver 500 nm

D Diffusion coefficient for the signaling molecule 4.365× 10−10 m2 · s−1

c̄e Enzyme concentration 105 molecule · µm3

(approx. 1.66 micromolar)

κ Rate of molecule degradation reaction 2× 10−19 m3 ·molecule−1 · s−1

(v‖, v⊥) Components of flow velocity (10−3, 10−3) m · s−1

The CSI estimates ˆ̄cs and ˆ̄cn in (15) correspond to sim-
ple averaging over the expected positions of s[k] = 1 and
s[k] = 0, respectively. Since the noise molecules are always
present whereas the signal molecules are present only when
s[k] = 1 holds, the expected number of molecules observed at
the receiver in positions with s[k] = 1 is higher than that in
positions with s[k] = 0. Based on this fact and since s[k] = 1
and s[k] = 0 are equiprobable, we assume that the

⌈
K
2

⌉
-th

largest elements of r correspond to s[k] = 1 and the remain-
ing elements (

⌊
K
2

⌋
-th smallest elements of r) correspond to

s[k] = 0. Thus, we first compute ˆ̄cn directly from (15b)
and then calculate ˆ̄cs from (15a). Having the estimated CSI
(ˆ̄cs, ˆ̄cn), we then compute the ML threshold ξMLBL and perform
the ML detection based on (14).

4. NUMERICAL RESULTS
In this section, we first present the considered stochastic

MC channel and the adopted system parameters. Subse-
quently, we use this model to evaluate the performances of
the optimal and suboptimal detectors.

4.1 Stochastic MC Channel Model
We assume the stochastic MC channel model introduced

in Subsection 2.3. We use this channel model to obtain the
“true” distribution of the CSI and to verify the effectiveness
of the proposed Gamma distribution to approximate the true
distribution. However, we emphasize that the proposed de-
tection framework is not limited to the transmitter, channel,
and receiver models presented in Subsection 2.3. The default
values of the channel parameters are given in Table 1. We
allow random variations of channel parameters D, v‖, v⊥,
and c̄e. To this end, we consider the following three scenar-
ios: Scenario 1: (D,σv‖ , σv⊥ , σc̄e) = (0.1, 0.5, 0.5, 0.1), Sce-

nario 2: (D,σv‖ , σv⊥ , σc̄e) = (0.2, 1, 1.5, 0.1), and Scenario 3:

(D,σv‖ , σv⊥ , σc̄e) = (0.1, 1.5, 0.5, 0.2).
In the simulation results provided in the following, we as-

sume that the variation of the mean of the noise c̄n is mod-
eled similarly as the variation of the mean c̄s. In particular,

we assume c̄n ∼ SNR−1c̄s where SNR =
Ec̄s{c̄s}
Ec̄n{c̄n}

is a constant

analogous to the signal-to-noise ratio (SNR) in conventional
wireless systems. Furthermore, if c̄s ∼ Gamma(α, β) holds,
we obtain c̄n ∼ Gamma(α, SNRβ) [10]. Hereby, we keep the
mean of the noise fixed and change the number of molecules
released by the transmitter to obtain different SNRs.

Remark 5. We note that the non-coherent detector in
[12] was designed assuming an additive white Gaussian noise
(AWGN) channel model. As discussed in Subsection 2.1, the
Poisson distribution for the observed number of molecules at
the receiver is a more accurate model for the diffusive MC
channel than the Gaussian distribution. Additionally, the
signal model assumed in [12] is different from that considered
in this paper. Therefore, we have not included the detection



Figure 2: The exact PDF and the approximated
Gamma PDF for Scenarios 1-3.

scheme in [12] as a benchmark in this section as a direct
comparison would not be fair.

4.2 Performance Evaluation
Fig. 2 shows the exact PDF obtained by Monte Carlo sim-

ulation of the CSI, c̄s, and the approximated Gamma PDF
for the three considered stochastic scenarios. Additionally,
the result for the case when all the underlying channel pa-
rameters in (4) assume their nominal values given in Table 1,
i.e., the channel is deterministic, is shown. The optimal pa-
rameters of the Gamma distribution are also shown in Fig. 2
and found using the search procedure presented in Subsec-
tion 3.2 and Remark 4 with w(x) = 1, ∀x, and δ = 0.5. We
observe a perfect match between the true PDF and the ap-
proximated Gamma PDF for all three scenarios. Moreover,
we observe that as the underlying channel parameters be-
come more random, i.e., Scenario 3 compared to Scenario 1,
the mean of the CSI decreases and its variance increases.

In Fig. 3, we show the bit error rate (BER) versus the
length of the detection block K for the three considered sce-
narios and SNR = 10 dB. As a lower bound on the BERs of
the proposed detectors, we include the coherent ML detector
which requires perfect CSI. Note that the actual CSI in (4) is
used for simulation whereas the approximated Gamma dis-
tribution is employed to calculate the selection metric for the
proposed MLMS detector in (9) by using (11). We observe
from Fig. 3 that the BERs of the proposed optimal and sub-
optimal detectors converge to the lower bound as K → ∞.
Furthermore, the gap between the BER of the MLMS de-
tector and the lower bound is small for reasonably large K,
which reveals the effectiveness of the optimal MLMS detec-
tor, although no resources are spent for training and CSI
acquisition. The gap between the BER of the proposed op-
timal MLMS detector and the proposed suboptimal detector
decreases for larger values of K and also from Scenario 1 to
Scenario 3.

In Fig. 4, we plot the BER versus the SNR in dB for Sce-
nario 2 and K ∈ {6, 10, 20}. In this figure, we observe that as
the SNR increases, the BER improves for all considered de-
tectors. We note that as SNR→∞, the BER of the proposed
suboptimal detector saturates to a certain error floor. This
is due to the fact that for the blind CSI estimator in (15), we
assumed that the percentages of the ones and the zeros in
a given detection block are exactly 50% which is not always

Figure 3: Bit error rate versus the length of the
detection block for Scenarios 1-3 and SNR = 10 dB.

Figure 4: Bit error rate versus the SNR in dB for
Scenario 2 and K ∈ {6, 10, 20}.

true especially for small values of K. This introduces an in-
herent CSI estimation error and leads to the aforementioned
error floor for the proposed suboptimal detector. Note that
as K increases, the BER of the proposed optimal detector
decreases and approaches the lower bound. We can also ob-
serve from Fig. 4 that the proposed optimal MLMS detector
outperforms the proposed suboptimal detector particularly
for small K, but the gap between the BERs of these two
detectors decreases as K increases.

5. CONCLUSIONS
We have derived the optimal non-coherent multiple-symbol

detector which does not require instantaneous CSI knowl-
edge. In order to alleviate the complexity of the proposed
optimal detector, we also developed an approximate detec-
tion metric and a low-complexity suboptimal detector. Nu-
merical results showed that the proposed optimal detector
outperformed the suboptimal detector, particularly for small
detection block lengths. However, as the length of the detec-
tion block increases, the performances of the proposed opti-
mal and suboptimal detectors converge to that of the base-
line scheme which requires perfect CSI. This demonstrates



the effectiveness of the proposed detection schemes.

APPENDIX
Using sets K1 and K0, (7) can be simplified to

sMLMS =argmax
s∈A

∫
c̄s≥0

∫
c̄n≥0

(c̄s + c̄n)
∑
k∈K1

r[k] c̄
∑
k∈K0

r[k]

n

exp (−|K1|c̄s −Kc̄n) f(c̄s,c̄n)(c̄s, c̄n)dc̄sdc̄n, (16)

where the term r[k]! in (7) is removed in (16) since it does
not affect the MLMS detection result. Moreover, the MLMS
detector can be written equivalently in expectation form as

sMLMS = argmax
s∈A

E(c̄s,c̄n)

{
(c̄s + c̄n)

∑
k∈K1

r[k] c̄
∑
k∈K0

r[k]

n︸ ︷︷ ︸
A(s)

× exp (−|K1|c̄s −Kc̄n)︸ ︷︷ ︸
B(s)

}
. (17)

We can conclude the following properties from the MLMS
detection metric Λ(s) = E(c̄s,c̄n){A(s)B(s)}. First, with re-
spect to the data sequence s, term B(s) is only a function of
the number of ones in s. Second, for a given number of ones
in s, term A(s) is maximized if the ones in s correspond
to the largest elements of the observation vector r. Note
that these two properties hold for any given CSI (c̄s, c̄n).
Hence, they also hold after the expectation operation with
respect to (c̄s, c̄n), i.e., E(c̄s,c̄n){A(s)B(s)}. Therefore, we can
avoid searching over all s ∈ A, and instead, find the optimal
threshold kthr ∈ {0, 1, . . . ,K} which sets the elements of s
corresponding to the kthr-th largest elements of r to one and
the remaining elements to zero. Moreover, we can further
simplify the MLMS detection metric in (17) as

Λ(s)
(a)
= E(c̄s,c̄n)

{[
n1∑
i=0

(
n1

i

)
c̄n1−i
s c̄in

]
c̄n0
n exp

(
−
∣∣K1

∣∣c̄s −Kc̄n)}
(b)
=

n1∑
i=0

(
n1

i

)
Ec̄s

{
c̄n1−i
s e−kthrc̄s

}
Ec̄n

{
c̄n0+i
n e−Kc̄n

}
, (18)

where in equality (a), we employ the Binomial expansion
and in equality (b), we use kthr = |K1| and the assumption
that RVs c̄s and c̄n are independent. The MLMS detection
metric in (18) is given in Theorem 1 in both expectation
and integration forms. Furthermore, recalling that Pr{s[k] =
1} = Pr{s[k] = 0} = 0.5 holds, the optimal threshold k∗thr
approaches K/2 as K →∞. This concludes the proof.
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